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ABSTRACT 
A pseudo steady-state model is developed to study heat transfer, fluid flow, and the interface shape in the 
liquid encapsulated vertical Bridgman crystal growth. The model, which is governed by momentum, heat, 
and overall mass balances in the system, is solved by a finite-volume/Newton method. Flow and 
temperature fields, as well as unknown melt/crystal and melt/encapsulant interfaces, are calculated 
simultaneously. Sample calculations are mainly conducted for the GaAs/B2O3/PBN system. Calculated 
results for the Germanium/graphite system are compared with finite element calculations by Adornato and 
Brown, and they are in good agreement. The effects of some process parameters, including the growth 
speed, ambient temperature profile and heat transfer conditions, on flow patterns, temperature fields and 
the interface shape are illustrated through calculated results. Interface inversion from concave to convex, 
by modifying the ambient temperature profile, is also demonstrated through computer simulation. 
Particularly, through an inverse problem approach, a flat interface can be easily obtained for various 
operation conditions. 
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INTRODUCTION 

The Vertical Bridgman (VB) process has been used widely for growing high quality III-V 
semiconductors such as GaAs, InP, and GaP, etc. For these materials, to maintain the 
stoichiometry of compounds, a liquid encapsulant, such as B2O3, is usually used to prevent 
volatilization of components. Recently, the liquid encapsulated vertical Bridgman (LEVB) grown 
GaAs, InP, and GaP crystals with large diameter and low dislocation density have been 
reported1"6. In fact, different furnace designs for the VB method have led to different names for 
the process, for example, the vertical dynamic gradient freeze (VDGF) technique for which an 
electrodynamic gradient multi-zone furnace is used to simulate the motion of ampoule or 
furnace2-4. However, they can all, conceptually, be grouped into the same category of the VB 
process. As compared with the Czochralski method (Cz), the LEVB technique may provide a 
more ecomomical way to produce high quality crystals, because of its lower capital investment 
and less clean-up effort after crystal growth. In fact, recent reports2-4 have shown that VDGF 
grown GaAs and InP single crystals have a much lower dislocation density than those grown 
from the Cz process. Nevertheless, similar to other crystal growth processes, the control of the 
melt/crystal interface, which is governed by heat transfer and fluid flow during solidification, in 
the LEVB process is of prime importance. A flat or slightly convex interface shape toward the 
melt during crystal growth is most desirable for growing single crystals with low defects7. A 
concave interface usually induces the growth of polycrystalline and thus degrades crystal quality. 
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However, during crystal growth, it is difficult to monitor the interface morphology. Therefore, 
numerical simulation of heat flow during crystal growth is necessary for providing useful 
information for process design and operation. Consequently, numerous computational studies 
have been devoted to this area in the past decade [e.g., References 8-20]. 

In most of numerical studies for VB crystal growth8-13, a pseudo steady-state was assumed, 
and the encapsulant was not considered. Recently, Kim and Brown14-16 developed a transient 
model based on the finite element analysis to study detailed convection and solute segregation 
in an ideal VB growth of III-V and II-VI compound semiconductors. Hofmann et αl.17 also used 
an unsteady state finite element model to study global heat and mass transfer in the VDGF 
process for 2-inch Germanium crystals. Melt/crystal interface inversion, from concave to convex, 
was also illustrated. Again the encapsulant was not included in these studies as well. In a recent 
study by Suzuki et al.18, a simplified conduction model was used to study heat transfer in LEVB 
GaAs crystal growth, in which the encapsulant and the anisotropic ampoule were included. 
However, no fluid fluid was considered. Among these studies, most of results show a concave 
melt/crystal interface, except those results by Crochet et al.12 and Hofmann et αl.17, in which 
the temperature profiles generated by a multi-zone furnace were adopted. Apparently, the control 
of interface convexity by the temperature profile from a traditional two-zone furnace has not 
been discussed. Also, all of the numerical studies mentioned were all based on the finite element 
method (FEM). Other numerical approaches, such as finite difference and finite volume methods, 
etc., for this free or moving boundary problem have not been used. Again, physical boundaries 
for the melt and encapsulant levels were assumed fixed. However, before crystal growth only 
initial amount of charge (material to be grown and encapsulant) is known. Therefore, to model 
the system in a self-consistent manner, the melt and the encapsulant levels, which are coupled 
with the position and the shape of the melt/crystal interface, need to be calculated. Furthermore, 
some fundamental issues, such as the effects of process parameters on flow patterns and the 
interface shape, have not been thoroughly discussed. Although some inverse problem 
approaches19"20 have been proposed for obtaining a flat interface, in these models, however, 
only simple conductive heat transfer is considered. 

In this report, a pseudo steady-state model is proposed to study LEVB crystal growth. This 
model will be validated by comparing calculated results with those from previous literature. The 
effects of some system parameters, particularly, the growth rate and ambient temperature 
distribution will be illustrated by calculated results. Interface control by modifying the ambient 
temperature distribution for the traditional two-zone furnace will also be illustrated through 
the model. More importantly, an inverse problem approach is also used to obtain a flat interface 
under various operation conditions. It should be pointed out that although a fully transient 
model is capable of providing more information about the system, particularly, the transient 
behavior, it needs much more CPU time and memory than steady-state models. Therefore, for 
a model-based crystal growth system, the steady-state model is more suitable for real-time 
computing and control. 

MODEL DESCRIPTION 
The LEVB crystal growth is simulated using a pseudo steady-state model. The model mainly 
neglects the evolution of system caused by the displacement of the ampoule in the furance. This 
approximation is usually valid at the middle of growth, in which end effects may be neglected. 
When a pseudo steady-state is achieved, if the ampoule is pulled downward at a speed Uamp, 
the crystal growth rate can be set to be Uamp. If the heating is axisymmetric, the physical domain 
of the model, which consists of encapsulant, melt, crystal, and ampoule, can be taken as shown 
in Figure 1. Due to axisymmetry, it can be treated as a two-dimensional model. Also, the mass 
of encapsulant and material, me and m0, is known before growth, whereas the height of the 
melt/encapsulant interface is unknown a priori, and depends on the relative amount of the melt 
and the crystal, as well as the melt/crystal interface shape during crystal growth. The 
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melt/encapsulant interface and the top surface of the encapsulant are assumed flat for simplicity. 
Internal radiation inside the crystal and the radiation through the encapsulant, which is 
transparent, are not considered in the present study. The ampoule is also assumed isotropic. 
Again, due to the axisymmetry, the flow and temperature fields, as well as the heights of the 
encapsulant/melt (ze) and melt/crystal (hr(r)) interfaces, are represented in cylindrical coordinate 
system (r, z). 

In this report, the melt is assumed incompressible and Newtonian, while the flow is laminar. 
Also, the Boussinesq approximation is adopted. As such, in the melt the governing equations 
in the conservative-law form (or the so-called divergence form) for fluid flow and heat transfer 
can be described in terms of stream function ψ, vorticity ω, and temperature Τ as follows: 

Equation of motion 

Stream equation 

Energy equation 
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where μ is the viscosity of the melt, pi the density, Cpi the specific heat, and ki the thermal 
conductivity of phase i, where i represents for the encalpsulant (e), melt (L), crystal (s), and 
ampoule (a). Also, g is the gravity acceleration and βT the thermal expansion coefficient of melt. 
The stream function ψ and vorticity ω in the above equations are defined in terms of the radial 
velocity u and axial velocity υ as: 

Again, since the ampoule is pulled downward at a speed Uamp, ν = Uamp and u = 0 for the crystal, 
ampoule, and encapsulant. 

The thermal boundary conditions are as follows: 
1) Along the centerline, 

due to symmetry. 
2) At the melt/encapsulant interface, the interfacial energy balance is, 

where η is the unit normal vector pointing into the encapsulant. It should be pointed out that 
in reality the radiation exchanges through the transparent encapsulant could be important. 
However, because the hot-zone temperature is usually uniform in the VB furnace, the 
radiation exchanges from the melt surface through the encapsulant to the furnace are small, and 
may be neglected. 
3) At the melt/crystal interface, the interfacial energy balance is, 

where η is the unit normal vector pointing into the crystal, ez the unit vector in z-direction, and 
AH the heat of fusion. The temperature at the melt/crystal interface is set to the equilibrium 
melting point, 

T=Tm (9) 

4) At the material/ampoule interface, the energy balance is, 

where η is the unit normal vector pointing into the ampoule and i the encapsulant (e), melt (L) 
and crystal (s). 
5) Heat transfer from the system to the ambient is by both radiation and convection according 
to the energy balance along the ampoule surface: 

where η is the normal vector on the ampoule pointing outwards, εα the emissivity of ampoule, 
σ the Stefan-Boltzmann constant, and Ta the effective ambient temperature. 
6) At the top of the system, including the top surfaces of ampoule and encapsulant and the 
inner surface of the ampoule above the encapsulant surface, an adiabatic condition is used, 
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Heat loss from the top surface can be added if necessary. However, in practice, a radiation shield 
is usually used, so that the heat loss from the top is small. 

The heat exchanges between the surrounding (furnace) and the ampoule are dictated by an 
effective ambient temperature Ta(z) specified along the ampoule surface. The effective ambient 
temperature distribution due to the two-zone VB furnace is assumed as follows: 

Ta(z)= TC+0.5(TH- Tc)[l + tanh[a(2-zp)]/tanh(0.5azL)] (13) 
where TH and Tc are approximately the hot- and cold-zone temperatures, respectively. zp is the 
position of 0.5(TH-f Tc), a the parameter to adjust the gradient of distribution, and zL the length 
of the ampoule. In practice, to obtain Ta(z) it requires detailed modelling of the whole system, 
including the loaded materials and the furance. Indeed, the material used and the design of the 
furnace, as well as the presence of the ampoule, can affect the thermal environments significantly, 
which in turn affect the effective ambient temperature profile. However, in the present study for 
simplicity Ta(z) is assumed to be a known independent variable. 

The fluid-flow boundary conditions are as follows: 
1) Along the centerline 

ψ=0, ω=0 (14) 
where ψ is set to zero as a reference. 
2) At the melt/encapsulaant and melt/crystal interfaces, 

with 
u = 0, v = Uampps/pL (16) 

Since B2O3 is used as the encapsulant in this study, and its viscosity is two hundred times higher 
than that of the melt, the fluid flow in the encapsulant is thus neglected. As such, the no-slip 
boundary condition is adopted at the encapsulant/melt interface. 
3) On the melt/ampoule interface, 

with 

where Rai is the inner radius of the ampoule as shown in Figure 1. Even though Rai changes 
with distances, it is essentially constant in the melt zone considered in this report. Therefore, 
the streamline being a constant along the melt/ampoule is a reasonable assumption. 

Although the initial mass of loaded material is known, the height of the melt/encapsulant 
interface still needs to be determined from the volumes of the melt and the crystal during crystal 
growth. Accordingly, this height of the melt/encapsulant interface, ze, is determined from an 
overall mass balance: 

PsVs,+pLVL-mo=0 (19) 

where Vs and VL are the volumes of the crystal and the melt, and can be evaluated by simple 
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line integration21. Also, the depth of the encapsulant, de, is calculated by, 
de = me/[πnRai(Ze)2pe] 

In some design problems, direct calculation of the operation conditions for a flat interface, 
i.e., an inverse problem approach, could be very useful. To do this, we have chosen the cold-zone 
temperature Tc as a control parameter to justify the zero interface deflection condition: 

hc(Rai)hc(0)=0 (20) 
To this inverse problem, above equation provides a constraint (or an objective function), and Tc 
is an unknown parameter that needs to be determined. Some results for this inverse problem 
approach will be illustrated subsequently. 

NUMERICAL METHOD 
The above governing equations and boundary conditions are transformed into those in terms 
of general (nonorthogonal) curvilinear coordinates (η, ξ) which fit all the interfaces, as shown in 
Figure 2. Computatin is performed in the (η, ξ) domain. In this way, all the boundary conditions 
can be treated easily and accurately, as already described previously21-23. 

The equation of motion, the stream equation, and the energy conservation equation ((l)-(3)) 
are discretized by employing a finite-volume approach. The physical domain, in (r, z), is subdivided 
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into a finite number of contiguous volumes (CVs) of volume V, which are bounded by cell faces 
located about halfway between consecutive nodal points; see Figure 5(a). This domain can be 
transformed into a computation domain (n, ξ) with a CV of volume V, as shown in Figure 3(b), 
and rdV=rJdV, where J is the Jacobian of coordinate transformation (J=rnZç—rξzη). Now, the 
integration of these equations over the CV can be proceeded as follows: 

After the Gauss theorem is applied, the above equation can be transformed into surface integrals 
(fluxes) over the faces of CK The resulting balance equations for each C V can then be expressed as, 

where Ie, for example, represents the total flux of field variable (φ, ω, and Γ) across the face e, 
and d the source term in (1H3)21· Equation (22) involves no approximation and represents the 
finite-volume equation of the differential equations. The numerical evaluation of the different 
terms in (22) requires the calculation of geometrical factors for control volumes and a 
discretization scheme for interpolating quantities at the cell faces from their adjacent nodal 
values. The details of the discretization scheme can be found elsewhere21. Boundary conditions 
are discretized by the second order finite differences. 

After these discretizations for both governing and boundary equations, a set of nonlinear 
equations can be obtained, 

f(x)=f(Τ,ψ,ω,hc,ze, Tc) = 0, (23) 
where hc and ze are the heights of melt/crystal and melt/encapsulant interfaces; see Figure 1. Tc 
needs to be solved only when (20) is imposed. The above nonlinear equation set is solved by 
Newton's method for the field and interface variables simultaneously. Starting from an initial 
approximation to vector of unknowns x°, successive updates are constructed as, 

xn+1=xn + δn+1, (24) 
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where the correction vectors δη+1 is the solution of the linear equation set, 

The components of the Jacobian matrix formed by explicit differentiation as = ∂fi/∂xj, 
represent the sensitivity of the residual vector to the solution vector. They are obtained, mostly, 
by the finite-difference approximation with consideration of the sparse structure of , so that 
the number of function evaluations can be minimized24. The components of for the overall 
mass balance, (19), are evaluated analytically. The dependence of the residual equations on the 
unknowns gives an 'arrow-shape" structure typical of free-boundary problems25. Equation (25) 
is solved by the GM RES iterative linear equation solver26 with a preconditioner for the incomplete 
LU decomposition without fill-in, ILU(O)21. In the implementation of Newton's scheme, 
continuation can play a vital role, particularly when the solution behavior changes dramatically 
with small changes in one or more of parameters. Hence, the pseudo arc length continuation28 

is also used to locate the results from one to the other. 
Although the interface variable hc is solved with other field variables simultaneously, two 

formulations for hc can be used: one is to use the Stefan boundary condition, i.e., (8), and the 
other is the isotherm condition, i.e., (9). However, since he does not appear explicitly in the 
isotherm condition, the former approach is found to be more robust during GMRES iterations. 
The detailed description of the numerical implementation can be found elsewhere21. 

RESULTS AND DISCUSSION 

Validation of the model 
The single crystal growth of GaAs in a pyroltic boron nitride (PBN) ampoule with B2O3 as 

the encapsulant is used to demonstrate the steady-state calculations of the LEVB process. Before 
the demonstration of the effects of process parameters, a simple comparison of present calculations 
with FEM calculations of Adornato and Brown8 for germanium crystal growth in a graphite 
ampoule (Rai=0.7 cm) is performed; Uamp = —4 x 10-4 cm/s. In Figure 4, the flow patterns and 
the interface shape for two different thermal Rayleigh numbers (RaT=gßT∆TzL3/μα) are 
demonstrated; ∆T=TH—TC and α is the thermal diffusivity. The ambient temperature 
distribution is shown on the RHS and is linear. In each figure, the LHS shows the streamlines 
and the RHS the isotherms. The temperature distributions, the single-cell flow structure, and 
the melt/crystal interface shape are in good agreement with the FEM results8; the streamlines 
due to crystal growth in Figure 4(b) were not shown in previous report. The maximum and 
minimum of the stream functions (ψmax and ψmin) are indicated by a plus and a minus, respectively, 
while the maximum of temperature (Tmax) by a cross. The streamlines are equally spaced at 
∆ψ = ψmax/10 for positive ones and at ∆ψ = ψmin/10 for negative ones. The isotherms are also 
equally spaced at AT=(Tmax—Tm)10 in the melt and the solid. These definition of ∆ψ and ΔT 
will be used throughout this study unless otherwise stated. The discrepancy in maximum of 
streamlines with FEM results is mainly due to different definitions of the stream function (without 
pL in Reference 8). The convergence of Figure 4(b) is also demonstrated in Figure 5. The ambient 
temperature distribution and zero stream function and vorticity are used as an initial guess. As 
shown, a quadratic convergence is achieved. CPU time required for a Newton's iteration takes 
only about 20 s in the HP9000/735 workstation. For all cases in this study, the calculations 
converge to an infinity norm of 1 χ 10-6 for both correction and residual vectors within five 
iterations. Due to the quadratic convergence of the method, the convergence error in the present 
calculations can be neglected. As shown, the computation time required for the pseudo 
steady-state approach is quite short, which is favoured by a real-time controlled model-based 
crystal growth system. 

In addition to the convergence error, the numerical simulation can also be suffered by the 
discretization error; sometimes, results from coarse meshes may lead to wrong conclusions. 
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Fortunately, this error can usually be examined through mesh refinements. On the other hand, 
calculations with a finer mesh need more CPU time and memory of computer. The effect of 
mesh on the accuracy of calculation is examined through two different meshes for 
GaAs/B2O3/PBN system. Figure 6 shows two different meshes used for computation. The physical 
properties of materials and input parameters used are listed in Table 1, and will be used throughout 
this report unless otherwise stated. In the present calculation, an isotropic PBN ampoule is 
adopted8, and the radiation is neglected (εa=0). The effects of radiation (nonzero εa) on the flow 
patterns and interface morphology will be considered shortly for comparison. In Figure 
6, the numbers of grids and unknowns are 1896 and 3479 for mesh Ml in Figure 6(a) and are 
4736 and 9519 for mesh M2 in Figure 6(b), respectively. The effective ambient temperature is also 
shown on the RHS of Figure 6, in which Th=1288°C, Tc = 1188°C, a=2cm, and zp = 5.5cm. 
The calculated results based on the meshes M1 and M2 are shown in Figure 7(a) and Figure 7(b), 
respectively. Apparently, the calculated results shown in Figure 7(a) and Figure 7(b) are very close 
to each other; in fact, the differences in ψmaxψmin, and Tmax are within 1.2%. Therefore, the 
calculations are quite independent of the meshes so far. Although the coarser mesh M1 in Figure 
6(a) seems to be satisfactory for the calculations, the finer mesh M2 in Figure 6(b) is still chosen 
for the rest of study. Again, one Newton's iteration takes only about 40-50 s for mesh M2. 



LIQUID ENCAPSULATED CRYSTAL GROWTH 13 

Table 1 Physical properties and input parameters29"31 

GaAs 

ps=5.I7 g cm - 3 

p, =5.71 g cm"3 

Tm=1238°C 
∆H = 726 J g-1 
h = 0.1 Wem - 2 °C-1 

ks = 7.0xl0-2 Wcm- l oC-1 
kL= 1.4x10-1 Wcm -1 °C-1 

Cp, = CpL = 0.42 J g_ l °C-1 

μ = 0.01967gcm-1 s-1 
βT=1.16x 10-4 
m0=190g 

B2O3 

p,= 1.648 g cm - 3 

kc, = 2x10-2 Wcm- l oC-1 
Cpe = 0.48 J g-1 °C-1 

mc = 4.175g 

PBN 

pa = 2.3 g cm - 3 

h = 0.1 W cm-2 ° C - 1 

ka. = 2.6xl0 - 1 W cm - 1 °C-1 

Cpe= 1.9 J g-1 °C-1 

єa = 0.0 or 0.8 

Other input parameters 

Rai = 0.2+ 0.535(1 +tanh[1.3(r-2)]/tanh[2.6]) cm 
RM = Rei + 0.2 cm 
zL= 10 cm 
T„ = 1288 °C 
TC=1188°C 
a = 2 
Zp = 5.5 cm 
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Effect of growth rate 
When a pseudo steady-state is reached, the crystal growth rate is equal to the ampoule pulling 

speed Uamp. Figure 8 illustrates the effect of crystal growth rate or the ampoule pulling speed. 
The ampoule speeds (downwards) are 0, — 5 x 10-4 cm/s, and — 2 x 10-3 cm/s in Figures 8(a), 8(b) 
and 8{c). respectively. As shown, the interface position shifts downward as the |Uamp| increases. 
Meanwhile, the concavity of the melt/crystal interface, as well as the size and the intensity of 
the lower convection cell, increases with the increasing |Uomp|. However, the maximum 
temperature and the intensity of the upper flow are not affected by the pulling speed much. In 
each case, there are two convection cells in the melt, which is a typical flow structure for the 
VB system8. The direction of the upper cells is clockwise, which is induced by radial temperature 
gradients, while the lower cell, due to the interface deflection, is counterclockwise in direction. 
According to Adornato and Brown8, the convection of the upper loop is mainly induced by 
thermal imperfection between the ampoule and the ambient, and also the thermal conductivity 
difference between the melt and ampoule. The lower cell is induced by the mismatch of thermal 
conductivity of melt and crystal. However, it should be pointed out that the lower cell still exists 
even though the thermal conductivities of the melt and the crystal are set to be equal. In fact, 
heat of fusion releases as the solidification proceeds. The higher the growth rate, the more the 
latent heat is released. The latent heat also makes the melt near the growth front hotter and 
thus lowers the temperature gradients and the melt/crystal interface there. Meanwhile, the radial 
temperature gradients and the deflection of the melt/crystal interface also increase due to radial 
cooling. The effect of growth rate on the axial temperature is further demonstrated in Figure 9, 
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in which the temperature distributions along the centreline at different growth rates are presented. 
As shown, at Uamp=0, there is the discontinuity in the temperature gradient at the melt/crystal 
interface, and this is due to the difference in the thermal conductivities of melt and crystal. When 
\Uamp\ is increased, the discontuinity increases; the gradient decreases in the melt but increases 
in the solid. At Uamp = — 2 x 10 -3 cm/s, near the melt/crystal interface the temperature gradient 
in the melt becomes very small. In fact, the maximum growth rate can be found by extrapolating 
the calculated temperature gradient at the melt side to zero. For a crystal growth rate higher 
than 2 χ 10 -3 cm/s, the convergence is not possible in the present calculation. 

Effect of ambient temperature profile 
Setting an optimum furnace temperature profile for LEVB crystal growth may be the most 

challenging task to crystal growers. In a traditional VB furnace, two temperature zones are used, 
and between two zones there is an adiabatic zone to regulate the temperature gradients near 
the melt/crystal interface and thus control the growth front (melt/crystal interface). Even for the 
multi-zone furnace VDGF technique, the setting of the temperature profile can also be very 
complicated. So far, no general rules have been reported for setting an optimal furnace 
temperature profile. However, the traditional two-zone VB furnace and the gradient furnace 
(with a linear heating profile) have been widely used because of their simple design. To give a 
simple comparison of these two furnaces, two types of temperature profiles are considered here, 
and the calculated results are shown in Figure 10. The ambient temperature profiles are also 
shown on the RHS of each figure. In Figure 70(a), the temperature distribution is described by a 
hyperbolic tangent function, (13), where a = 2 is used to make a larger temperature gradient near 
the melt/crystal interface. In Figure 10(b), a linear temperature profile is used. For both figures, 
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the same temperature difference, TH—TC= 100°C, is used for comparison. As shown, due to 
crystal growth, the melt/crystal interface shifts downward and becomes more concave for both 
heating profiles. However, the change is much more significant in Figure 70(b), where a linear 
ambient temperature profile is used. As a result of the more concave growth front, the size of 
the lower convection cell increases. Similar results can be found in Adornato and Brown8. The 
temperature distributions along the centerline are also illustrated in Figure 11. As shown, the 
temperature gradient near the growth front with the linear temperature profile is much smaller 
than that with the hyperbolic tangent profile. Clearly, with a linear temperature profile the 
removal of heat of fusion may be more difficult due to smaller temperature gradients. Thus a 
lower and more deflected melt/crystal interface is needed to accommodate the heat of fusion. In 
other words, with the same hot- and cold-zone temperatures and the growth speed it may be 
easier to obtain a flat interface in the traditional VB two-zone furnaces. 

Effect of radiation 
So far, the radiative heat transfer between the furnace and the ampoule is neglected by setting 

εα=0 for simplicity. However, in a high temperature system the radiative heat transfer, usually, 
is important and cannot be ignored. To demonstrate this effect, calculations with εa = 0.8 are 
performed for comparison. As shown in Figure 12, results from two emissivity values, εα = 0 and 
0.8, are compared. Clearly, Tmax increases slightly when the radiation is considered, but its effect 
on the convection and the growth front shape is not significant. From the isotherms, it can also 
be observed that with radiation the temperature in the melt is slightly higher, while in the crystal 
is lower. It should be pointed out that in a real crystal growth furnace, the effective thermal 
profile can be affected significantly by the radiation exchanges in the whole system, including 
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the furnace. Unfortunately, the global modelling of the radiative heat transfer is not taken into 
account in this study. Therefore, the effect of radiation is still not clear, but at least the effect 
of emissivity is not significant in this case. In the following discussion, the effect of emissiviity 
is considered, and εa=0.8 will be used for the rest of calculations. 

Interface control 
As mentioned earlier, a flat or slightly convex melt/crystal interface is desired for crystal growth 

in the LEVB process. However, the cases discussed so far have only concave melt/solid interfaces. 
Nevertheless, from the effect of the ambient temperature profile in the previous section, it may 
be reasonable to say that the higher the temperature gradient, the less concave the melt/crystal 
interface is. Therefore, using a higher ambient temperature gradient in the system near the 
melt/crystal interface may be a right direction to achieve a flat or convex interface. This idea is 
further demonstrated in Figure 13 by lowering Tc, while the distribution function is unchanged; 
however, the position of Tm in the distribution is shifted upward slightly. As shown in Figure 
13, the interface position shifts upward and its shape becomes much less concave with decreasing 
Tc (or increasing the temperature gradient). Due to the less concave interface, the lower flow 
cell becomes weaker and its intensity smaller. For example, the intensity of the lower flow cell 
in Figure 13(b) is now two orders of magnitude smaller than that in Figure 13(a). Interestingly, 
when Tc is lowered down to 888°C in Figure 13(c), the growth front becomes convex, and the lower 
cell disappears. The inversion of the melt/crystal interface by increasing the temperature gradient 
in the crystal was also observed in the simulation and crystal growth practice by Hofmann et 
al.11. Although the interface position related to the adiabatic zone is also an important factor 
to the interface inversion32, high enough temperature gradients in the crystal near the melt/crystal 
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interface are still required to remove the heat of fusion effectively. On the other hand, the 
temperature gradients in the crystal cannot be increased too much, especially in the case of 
GaAs due to its lower critical resolved shear stress (CRSS). The thermal stress induced defects 
could be a serious problem. Therefore, in addition to interface control, the control of thermal 
gradients in the crystal is important as well. In the following sections, an effective way to obtain 
a flat interface, and at the same time to find a condition with smaller temperature gradients in 
the crystal, is illustrated. 

Conditions for a flat interface 
From process design point of view, it may be more useful to calculate a right growth condition 

(e.g., Tc) directly for a flat interface without trial-and-error. An efficient way to do so is through 
an inverse problem approach. The inverse problem approach used here is quite simple. We 
simply impose a zero deflection condition, (20), and solve the operation parameter Tc together 
with all other field variables using the robust Newton's scheme. In fact, for the VB crystal 
growth, the interface shape is usually very simple. As it is, the zero interface deflection condition 
is a good approximation to a flat interface. As compared with the approach used by Tortorelli 
et al.20, this approach is better conditioned and much easier to be implemented. This approach 
has proven to be effective for the cases with different hot-zone temperatures (TH), and some of 
sample results are shown in Figure 14. As shown, due to the flat interface, there is only one 
main flow cell in the melt; the extremely small secondary flow cell near the lower corner can be 
neglected. More interestingly, the lower the TH, the higher the Tc can be used for obtaining a 
flat interface. The flow is also weaker at lower Th. Their axial temperature distributions at the 
centerline are further demonstrated in Figure 15. Obviously, if a lower hot zone temperature is 
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used, temperature gradients in the crystal are also smaller, which is favoured for growing single 
crystals with a lower dislocation density. 

In the traditional VB process, changing the adiabatic zone length, which can be characterized 
by the parameter a in Ta(z), is also an effective way to control interface morphology. Figure 16 
shows the results for a flat interface at various a. Clearly, if the temperature gtadient is higher 
(larger a) near the interface, a higher Tc value can be used for a flat interface. Their axial 
temperature distributions at the centerline for various a are further illustrated in Figure 17. 
Interestingly, the calculated temperature gradients for various a are very close to one another 
in the crystal near the interface. 

The last example for interface control is the effect of a booster heater. The idea of using a 
radial booster heater was originally proposed by Jasinski and Witt33, and was further applied 
in a realistic furnace design by Koai et al.34. To illustrate the effect of local heating from the 
booster heater, we applied an overshoot heating profile to the system. Figure 18 shows the 
calculated results with various local heating, which is represented by the overshoot temperature 
∆Tp. In all of the cases, the hot-zone temperature is kept only 10°C higher than the melting 
point. Figure 18(a) illustrates the case without local heating (∆Tp=0). As shown, the interface 
is quite flat, but concave near the melt/ampoule interface. The concave interface near the ampoule 
can induce parasitic nucleation and lead to polycrystals. However, as the booster heater is turned 
on and set ∆Tp=25°C (Figure 18(b)), the interface becomes very flat; the interface deflection is 
zero. More interestingly, as the local heating is increased further, as shown in Figure 18(c), the 
interface becomes slightly concave. The concave interface due to the booster heater has not been 
reported before. Meanwhile, the maximum temperature is now located at the middle of the 
sample, and this results in larger radial temperature gradients in the melt. As it is, the convection 
in the melt becomes much stronger, and the flow structure becomes two-cell. The stronger flow 
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and the two-cell flow structure induced by the booster heater were also observed by Neugebauer 
and Wilcox35 in the flow visualization of VB salol growth. Therefore, from this example it is 
clear that a careful tuning of the local heating is required to obtain a satisfactory result. Finally, 
it should be pointed out that, with the help of the booster heater at ∆TP=25°C, the cold-zone 
temperature for a flat interface can be elevated to 1122.7°C, as compared to the case in Figure 
14(a) (1075.5°C). 

CONCLUSIONS 
1) A pseudo steady-state model, which simulates heat transfer and fluid flow, as well as the 
melt/crystal interface, is used to study the liquid encapsulated vertical Bridgman crystal growth. 
A finite-volume/Newton method is used to solve this model. The calculated results for Ge/graphite 
system are in good agreement with the previous report. The quadratic convergence of the method 
and mesh refinements are also illustrated. The effects of process prameters for GaAs/B2O3/PBN 
system are demonstrated through calculated results. 
2) Two-cell flow structure is observed for crystal growth with a concave melt/crystal interface, 
and this is consistent with previous numerical studies for the vertical Bridgman process. 
Furthermore, the higher the growth rate, the more concave the melt/crystal interface is. Due to 
the larger interface deflection, the lower convection cell becomes larger at a higher growth rate. 
Calculations also show that a linear ambient temperature profile, which is commonly used in 
a gradient freeze furnace, may lead to a more concave melt/crystal interface. 
3) In the present study, when the effective ambient temperature distribution is assigned, the effect 
of emissivity (radiation) is not significant. However, in practice the effective ambient temperature 
profile is affected by the radiative heat transfer exchange in the whole system. The detailed 
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design and the materials of the furnace, including heating elements, insulation, etc., can all affect 
the results. Therefore, the effect of radiation is still not clear. 
4) A flat or a convex growth front can be obtained if the gradient of the ambient temperature 
profile is large enough, and the position of the melt/crystal interface is located near the upper 
edge of the adiabatic zone. One-cell flow structure is observed for the case with a convex growth 
front. 
5) The cold-zone temperature for the flat interface can be calculated directly through an inverse 
problem approach. Some sample results indicate that to obtain a flat interface if the hot-zone 
temperature or the adiabatic zone length is reduced, a higher cold-zone temperature can be 
used. Also, with the help of a booster heater near the interface, the cold-zone temperature can 
be further increased. However, too much local heating will lead to stronger convection, and 
sometimes produce a more concave interface. 
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